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Abstract. The main aim of this work is to present an interpretation of kingtype models as a 
kind of field theory in the framework of non-canmuhlive geometry. We presenf the method and 
cansbucl sample models of field theory on discrete spaces using the Iwls of discrete geometry 
inhcduced. We write the action for a few models. then we compare hem with various models 
of statistical physics. We also c o n s m  Ihc gauge theory with a discrete gauge p u p .  

1. Introduction 

Non-commutative geometry can be considered as a set of mathematical tools which, applied 
to theoretical physics, can significantly improve and enlarge the possibilities of model- 
building in field theory [I+. These methods allow us to apply the instruments of 
differential geometry not only to manifolds but also to many non-standard objects like 
discrete spaces and quantum spaces. For instance, it appears that the standard model of 
electroweak interactions can be properly described by the product of continuous and discrete 
geometry [MI, thus suggesting the significance of the role of discrete spaces in physics. 

In our earlier work [SI we constructed the necessary tools to build sample models in the 
framework of discrete geometry and we used them to construct gauge theories. Now, we 
want to tum our attention to the already existing class of physical models, which are also 
situated on discrete spaces, the best known example being the king model [9]. The problem 
that we wish to consider in this work is whether such models can be reformulated as a field 
theory constructed according to the NI= of non-commutative geometry. Our attempt is to 
show the general procedure of such a construction and to illustrate it with simple examples. 
We also include a brief account of the differential calculus and metric properties of discrete 
spaces. 

2. Differential calculus 

This section is devoted to a brief review of differential calculus on discrete spaces. We state 
here only the most important facts and results; details can be found in our earlier work [SI. 

Let G be a finite group and A be the algebra of functions on G. which are valued in a 
field F. The natural choice for T is the field of complex numbers 6, however, one may 
also consider other possibilities. We denote the group multiplication by 0 and the size of 
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the p u p  by NG. The right and left multiplications on G induce natural automorphisms of 
d, R, and L,, respectively 

(1) 
with a similar definition for L,. 

Now we shall construct the extension of A into a graded differential algebra. First we 
introduce the space of oneforms as a free left-module over A, which is generated by the 
elements x', g E G', where by G' we denote G \[e). Then we define the external derivative 
d on the zero-forms (elements of A) in the following way: 

(hf) (8) = f (s a h )  

da = (a - R8(a)) x8 . (2) 
8 

The extemal derivative is nilpotent and obeys the Leibniz rule, provided that the module of 
oneforms simultaneously has the structure of a right-module, as defined for its generators: 

and the action of d on the generators x8 is as follows: 
xRa = R,(u)xR a E A g E G' 13) 

dXR = -cCfkxh @xk g E G' (4) 
h.X 

where the constants Cik are the structure constants, obtained from the relations 

( I  - Ri)( I - RI) = 

C& = 8: + 8; -a;,,, . 

Ci( I - R k )  . (5) 
k 

In the case of the discrete group G their form is rather simple 
(6) 

As can already be seen in the formula (4) the higher-order forms are the tensor products 
of the lower-order ones. Then, the extemal derivative acts on them in accordance with the 
graded Leibniz rule 

d(U @ W )  = (dv)  @ w + (-l)&' "U @ ( d ~ )  . (7) 
The conjugation in the algebra of forms is taken to be the internal conjugation within the 

algebra A for the zero-forms. For higher-order forms it is sufficient to define this operation 
for the generating one-forms 

(XR)' = -xW') . (8) 
All these rules give us the sbucture of the infinitedimensional differential algebra over 

the algebra A. We shall use them as tools to define simple examples of field theories. 

3. Metric on discrete spaces 

In this section we shall briefly outline the general scheme of the construction and the 
properties of the metric. We shall give the definitions as well as the intuitive picture. 

We define the metric on the module of one-forms, as a middle-linear, A-valued 
functional q 

v(aw.@zb) = av(@t,oz)b (9) 

v ( w , 4  = v ( W I . a o z )  (10) 
This definition is suitable only for the case considered and it has to be modified for other 
algebras. Both conditions are straightforward generalizations of linearity requirements for 
the bimodules. In the case of discrete geometry, with the module of one-forms generated 
by the forms x R .  the metric is completely determined by its values on the generators, 
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q g h  = q(xR,  xh) .  Now. because of (10) and the rules of the differential calculus (2x4 )  we 
obtain the result that qBh must vanish unless g = h-'. This means that OUT memc has only 
No - 1 independent components, which we shall denote as ES 

qsh = E 8 E8 E A g E G'. (11) 
If we require that the constructed metric gives rise to a semi-norm, we should restrict 

ourselves to metrics that are positive definite. For the algebra of @-valued functions this 
is equivalent to the choice of real, non-negative E,. The last issue we wish to highlight 
is the question of degeneracy. We say that the metric is non-degenerate if the condition 
q@*, a )  = 0 implies that a = 0. 

The question we wish to raise next is whether this formal construction of the metric can 
be translated to the metric properties of our base space, i.e. the group G. It is important 
in the construction of physical theories that we should be able to have the picture of the 
underlaying base space rather than only of the algebra A. Therefore, we would like to have 
the possibility of introducing both distances and the concept of nearest neighbours. 

We use the following definition for the distance d(p .  9) between two points p and q of 
the base space [4]: 

We have identified the base space as the space of characters on the algebra A, so that the 
definition (12) makes sense for arbitrary A. In our case, of course, p(a)  = a@). The 
inequality q(da, da') < 1 means that the function on its left-hand side is maximized by the 
constant function 1. 

Before we present a few simple examples let us observe some general properties of the 
metric. First, the metric does not have to be symmetric, i.e. q(uv v )  # q(v ,  U). However, 
after integrating out the result using the Haar integration on G we recover the symmetry. 

The distances are, by definition, positive numbers from the field F, so in our case, 
where F = @, they are real positive numbers. Of come. the definition (12) implies the 
triangle inequality 

(13) 
for any p. 9. r .  

Finally, let us introduce the notion of the nearest neighbours of a point h, which shall 
be all such elements of the base space of the form h 0 g, h 0 (g-l), where g E G' and 

d(p .  9)  < d(p ,  r )  + d(r, 9 )  

E g  # 0. 
Now, let us proceed with the examples. 

iZ wirh a trivial metric. Let us take the functions E, determining the metric q to be zero for 
g # 1 and E I  = I. Then, the condition q(da, da') < 1 simplifies to (u(p) -a(p+ I))* < 1, 
and one easily finds the distance between n,  m E iZ 

We can now draw a picture representing this base space. If we connect the nearest 
neighbours with a link, then each element has two nearest neighbours at the distance I 
and we obtain the image shown in figure I ,  which is the most natural representation for Z. 

d ( n , m ) = l n - m l .  

-5 -4 -3 -2 -1 0 1 2 3 4 - - - - - - - - - - - - - - - - 
Figure 1. Z with a lrivisl metric. 
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-9 -1 -5 -3 -1 1 3 3 I 9 - - - - - 
7 1 - 1 w - 1 - - I - 

-10 -8 -6 a -2 0 2 4 6 8 IO 

Figure 2. 2 wilh a non-trivial metric. 

Z with a non-trivial metric. Let us take El = 1 and E2 .= 1 with all other E, vanishing. 
The condition o(da. da’) < I takes now the form 

( (a(n) -a(n+ 1))*+((a(n)-u(n+2))* < 1 

and we see that the distances are different from those in the previous example. The general 
formula is rather complicated; we shall only mention that d(n,  n + 1) = d(n ,  n + 2) = 1, 
d(n ,n  + 2) = (1/&) + 1 and for large m the distance d(n,n  + m) is proportional to 
(I/&& This result is presented in figure 2, where we see that each point has now four 
nearest neighbours. 

We can proceed furher with more sophisticated choices of the metric q g h ,  deriving in 
each case the corresponding pictorial representation. Of course, we do not have to deal with 
infinite groups: one may also take ZN, in which case the resulting diagram will be similar, 
though, of course, it would have the topology of a circle. 

ab .hd 

Figure 3. S, wilh a non-standard metric. 

S3 with a non-trivial metric. As the last interesting example we produce the Ss group with 
a rather complicated type of metric. Let U and b be the two generators of S3, such that 
a2 = b2 = (ab)3 = id. We take Eo = Eo = Eohs = 1 and that all other coefficients of the 
metric vanish. Now, we have three nearest neighbours for each point of S3. The precise 
values of distances are rather difficult to calculate and we shall not give these values here. 
What interests us more is the picture we get by connecting all elements with their nearest 
neighbours. The object we obtain is presented in figure 3. We easily recognize that its 
topology (if we look at the rectangular walls) is that of the MBbius strip. This illustrates 
that the metric on the finite dimensional objects may, in some sense, generate ‘non-trivial 
topology’ of the resulting lattices. 

4. Field theories 

Having the metric and the formalism of the differential geometry, we can construct field 
theories for such spaces. The general procedure and some examples of unitary gauge 
theories were presented in our earlier work [SI; here we want to concentrate on different 
aspects of the theory. 
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Our basic algebra A is again the commutative algebra of complex-valued functions on 
the group G. The unitary group of this algebra, U(d), contains all functions valued in the 
circle SI. The algebra A is generated by U(A)  or any of its subgroups. 

4.1. Discretized target space 

To build a physical theory one requires a Hermitian vector bundle over the base space or, 
equivalently, a projective module over A. Taking a Hermitian module we may constmct 
the simplest action in the usual way 

where m are the elements of the module and V is an arbitmy potential function. This 
approach has been dealt with in many works 11-71, 

However, this is not what we now seek, as this would not lead us to theories having 
a discretized target space. The desired formalism seems to be similar to that of the sigma 
models where we take the group-valued fields. If we take U to be an element of any group 
generating the algebra A, then the proposed expression for the action 

S = / i q  (dU ' ,  d U )  + v ( U )  

makes perfect sense. The action (15) is quite natural; it contains both the 'kinetic' and 
the 'potential' terms. The latter must be however restricted, so that the value of S is real. 
From the point of view of field theory the 'kinetic' term describes the dynamics of the field 
and the other term its self-interaction. However, we shall see later, there is another, more 
intuitive, interpretation. 

We shall use this prescription to construct simple models of the discrete geometry. We 
take the group 'H to be any subgroup of U(d)  and the action precisely as defined in (15). 
with the integration on the algebra beiig the already introduced Haar integration. Taking 
into account the form of the metric (1 1) and the rules of the differential calculus (ZHS) we 
may rewrite the action as follows: 

Using the properties of the integration we finally obtain 

where we have omitted the constants coming from U'U terms. Now, we shall attempt to 
rewrite (17) in a slightly more convenient and recognizable form. Remember that the Haar 
integration is simply the sum of over all elements of the group G 

so that the potential term splits into the sum of independent contributions from each point 
of the base space 



5310 A Sitan 

integration is simply the sum over nearest neighbours with certain weights. Therefore we 
can rewrite this term as 

where W ( g .  h )  is the weight which equals E,h-ig)(h). 

4.2. Exumples 

Having constmcted the general form of the action we can now present a few interesting 
examples. We restrict ourselves only to the most distinctive situations as we want only to 
demonstrate the analogies between the models of statistical physics and of non-commutative 
geometry. 

The Isin8 model. Let us take the group 'H to be the group of &-valued functions on Z. 
Because for any &-valued function U' = I. the potential term can be reduced to the linear 
form V(U) U. If we fix the metric to be the standard metric on Z, as in the first example 
of the previous section, we get the following action: 

(21) 

where a, y are arbitrary real constants. We easily recognize that the action describes the 
hing model precisely. Note that $e 'kinetic' term of our field theory has now the meaning 
of the interaction between the nearest neighbours, while the 'potential' term has no other 
specific interpretation, apart from being the interaction with some extemal fields. The 
constant a sets the value of the gap between the energy levels of the model. The path 
integral is now simply the partition function of the king model. 

If the potential term is absent the action S possesses a global symmetry as the change 
U + -U leaves the action invariant. 

The Ising madel with a non-standard metric. As the next example we take again the same 
group and the same base space but with a different metric. This time we assume that the 
metric is as in the second example of the last section, i.e. E ,  = Ez = 1 and that all other 
coefficients vanish. Then, after similar steps as in the previous case, we obtain the following 
action: 

(22) 

This again is a variation of the Ising model, although on a slightly modified lattice with 

s = C a U ( n ) ( / ( n  + 1) + y U ( n )  
"€2 

s = C u  (U(a)U(n + 1) + U(n)U(n +z)) + Y U  . 
"€2 

each point having four neighbours. as symbolically represented in figure 2. 

The fhree-sfate Pans model. Consider now the group of &-valued functions. Following 
the same procedure as in the two previous cases we construct the action, taking as the metric 
over Z again the standard metric (the same as in the first example). Then the interaction 
term reads 

s = - C  aRe(U(n)'U(n+ 1)) . (23) " 
This action (modified slightly by adding an appropriate potential term) can be recognized 
as the one describing a thw-state Pons model. By changing the metric we may. of course, 
modify the interaction by increasing the number of nearest neighbours. 
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All these examples deal with one-dimensional models, but the generalization to higher 
dimensions is straightfonvard. For instance, one has to take the group Z" to obtain the 
n-dimensional genemlization of the considered models. If we want to restrict theories to a 
finite base space (so that the action is a finite sum), we take the base space to be ZN, and 
take the limit N + w to recover the case of the Z-based model. 

These examples illustrate that the simple models of statistical physics have their 
interpretation as a field theory constructed in the framework of non-commutative geometry. 
They are all built in a rather simple fashion, using the commutative group Z as the base 
space and a finite commutative unitary group as the target space. One may, of course, 
attempt to go beyond that and use the same tools to construct more sophisticated theories, 
for the non-Abelian groups, for instance. Another new possibility is to construct gauge 
theories, extending the observed global symmetries to the local ones. We shall see. the 
construction of such an example in the next section. 

5. The gauge theory 

We shall now briefly outline the prospects of clpating the gauge theory by exploiting the 
symmetry that we have noticed in the last section. The natural extension of the observed 
global symmetry is the group 31 itself, so we propose it as a gauge symmetry group. 

Following the construction procedures from our earlier work [SI we take the gauge 
connection one-form @ 

when the coefficients O8 belong to the algebra A. It will be convenient to use the shifted 
connection, 'v, = 1 - eg, as then all the expressions simplify considerably. Since the group 
is unitary we have the hermicity constraint, which is 

The curvature two-form F = d@ + @@ expressed in terms of 'v nads 

where we identify 've with I. Having the metric 
possible Ymg-Mills type actions 

'v: = Rg('v~g-q)  . (25) 

F8h = * g R g ( * d  - *lkOgl (26) 
of the form (1 1) we can construct all 

We shall concentrate now on the particular case of the king model. The metric is 
defined by taking El = 1 and E, = 0 for g # I. This fixes the actions (27)-(29) to take 
the following form: 
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First, let us note that only the fields \VI and U% contribute to the action, which follows from 
our choice of the metric. Moreover, this choice causes the action SI to have no interaction 
terms, which causes the value of W ( n )  to be independent of other values of this field for 
every n.  The situation is somehow different in the third possible action, where we have 
both the interaction term for *I and the interaction between 

The model described by the first action (30) is not interesting from the physical point 
of view, as it describes a completely non-interacting system. We shall not discuss here the 
other action and its properties, as it does not resemble any model of statistical physics. 

and Yz. 

6. Conclusions 

We have shown a way to construct a class of field theories in discrete geometry, which have 
discretized target spaces. We found that some of them correspond exactly to well known 
models of statistical physics. We were able to modify them slightly by changing the free 
parameters of our construction, which were the metric and the potential. 

Let us summarize the most important facts about the construction. The space of fields 
was chosen to be a subgroup of the unitary group of the algebra A, which determined the 
target space. The form of the interaction was dependent only on the metric of the base 
space and it appeared in the action as a ‘kinetic’ term. We also allowed a potential term. 
This determined the action and the model completely. 

We believe that the correspondence with field theory, which we presented in this paper 
for the king model and the threestate Potts model, can be extended to many other systems. 
Moreover, using this method we may be able to analyse and compare their properties from 
another viewpoint: we may also use the methods to create other models, by fitting the 
algebra A, the subgroup ‘H and the metric q. Whether such models would exhibit any 
interesting features remains an open question. 

Finally, we presented a method of building a gauge theory, using a discretized group of 
gauge symmetries. It seems, however, that the resulting models, at least in the case studied, 
were of little physical meaning. 

In our considerations we used the commutative algebra A of complex-valued functions 
on G. Let us mention here that the same analysis may be repeated for algebras over Z. In 
that case the algebra A would be simply defined as generated by the group ‘H. We point 
out that in that case one does not have to restrict oneself to Abelian groups. That situation 
would be probably the most interesting one. 
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